很多朋友想了解关于方差的计算公式的一些资料信息,下面是www.lmhack.com小编整理的与方差的计算公式相关的内容分享给大家,一起来看看吧。
方差=平方的均值减去均值的平方。例:有 1、2、3、4、5这组样本,其平均数为(1+2+3+4+5)/5=3,而方差是各个数据分别与其和的平均数之差的平方的和的平均数。
文章目录:
- 1、方差的计算公式是什么?
- 2、方差的计算公式是什么?
一、方差的计算公式是什么?
方差=平方的均值减去均值的平方。例:
有 1、2、3、4、5这组样本,其平均数为(1+2+3+4+5)/5=3,而方差是各个数据分别与其和的平均数之差的平方的和的平均数,则为:
[(1-3)^2+(2-3)^2+(3-3)^2+(4-3)^2+(5-3)^2]/5=2,方差为2。
方差的公式:
方差是实际值与期望值之差平方的平均值,而标准差是方差算术平方根。
方差是各个数据与平均数之差的平方的和的平均数,即
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。
方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差,记作S2。
二、方差的计算公式是什么?
方差的计算公式是s2={(x1-m)2+(x2-m)2+(x3-m)2+…+(xn-m)2}/n,公式中M为数据的平均数,n为数据的个数,s2为方差。文字表示为方差等于各个数据与其算术平均数的离差平方和的平均数。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。方差描述随机变量对于数学期望的偏离程度。
当数据分布比较分散时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
方差计算公式
方差是各个数据与其算术平均数的离差平方和的平均数,在实际计算中,我们用以下公式计算方差。
方差是应用数学里的专有名词。在概率论和统计学中,一个随机变量的方差描述的是它的离散程度,也就是该变量离其期望值的距离。一个实随机变量的方差也称为它的二阶矩或二阶中心动差,恰巧也是它的二阶累积量。
方差的算术平方根称为该随机变量的标准差。
拓展资料
常见方差公式
(1)设c是常数,则D(c)=0。
(2)设X是随机变量,c是常数,则有D(cX)=(c²)D(X)。
(3)设X与Y是两个随机变量,则
D(X+Y)=D(X)+D(Y)+2E{[X-E(X)][Y-E(Y)]}
特别的,当X,Y是两个相互独立的随机变量,上式中右边第三项为0(常见协方差),
则D(X+Y)=D(X)+D(Y)。此性质可以推广到有限多个相互独立的随机变量之和的情况。
(4)D(X)=0的充分必要条件是X以概率为1取常数值c,即P{X=c}=1,其中E(X)=c。
(5)D(aX+bY)=a²DX+b²DY+2abE{[X-E(X)][Y-E(Y)]}。
以上就是小编对于方差的计算公式的相关信息的介绍,希望能对大家有所帮助。
本文到此结束,希望对大家有所帮助呢。