大家好,最近很多小伙伴想了解余切函数的相关信息,给大家科普专门整理了与余切函数相关的一些内容,让我们一起看看吧。
本文目录一览:
余切函数公式是什么?
余切函数公式是:cot(A)=b/a
其中a为对边,b为临边,c为斜边。
cot坐标系表示:cotθ=x/y,在三角函数中cotθ=cosθ/sinθ,当θ≠kπ,k∈Z时cotθ=1/tanθ(当θ=kπ,k∈Z时,cotθ不存在),cotA=∠A的邻边比上∠A的对边。
扩展资料:
任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合简单点理解,直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。
“余切序列”是蝴蝶效应的一个典型例子。以下三个数列每一项都是前一项的余切,初值分别为1、1.00001、1.0001,但是从第10项开始,三个数列开始形成巨大的分歧。这就是混沌的数列,经过足够多项后,得到的数字完全可以看作是随机的,混沌的。
余割函数,正割函数,余切函数的图像,以及他们的定义域,谢谢了
1、余割函数(y=cscx),定义域为{x|x≠kπ,k∈Z},图像如下:
2、正割函数( y=secx),定义域为{x|x≠kπ+,k∈Z},图像如下:
3、余切函数(y=cotx),定义域为 {x|x≠kπ,k∈Z},图像如下:
扩展资料:
1、余割函数质:
(1)在三角函数定义中,cscα=r/y。
(2)余割函数与正弦互为倒数:cscx=1/sinx。
(3)值域:{y|y≥1或y≤-1}。
(4)周期:最小正周期为2π。
(5)奇偶:奇函数。
(6)图像渐近线:x=kπ,k∈Z余割函数与正弦函数互为倒数)。
2、正割函数质
(1)值域:secx≥1或secx≤-1。
(2)奇偶:偶函数,即sec(-θ)=secθ.图像对称于y轴。
(3)周期:最小正周期为2π。
(4) 单调:(2kπ- ,2kπ],[2kπ+π,2kπ+ ),k∈Z上递减;在区间[2kπ,2kπ+),(2kπ+π/2,2kπ+π],k∈Z上递增。
3、余切函数质
(1)值域:余切函数的值域是实数集R,没有最大值、最小值。
(2)周期:最小周期是π。
(3)奇偶:奇函数。
(4)单调:余切函数在每一个开区间 上都是减函数。
参考资料来源:百度百科—余割函数
参考资料来源:百度百科—正割函数
参考资料来源:百度百科—余切
余切函数是什么
任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合。简单点理解:直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。
余切表示时用“cot+角度”,如:30°的余切表示为cot30°;角A的余切表示为cotA。旧用ctgA来表示余切,和cotA是一样的。假设∠A的对边为a、邻边为b,那么:cot A= b/a(即邻边比对边)。
余切序列
“余切序列”是蝴蝶效应的一个典型例子。以下三个数列每一项都是前一项的余切;初值分别为1、1.00001、1.0001,但是从第10项开始,三个数列开始形成巨大的分歧。这就是混沌的数列,经过足够多项后,得到的数字完全可以看作是随机的,混沌的。
以上余切函数的介绍就聊到这里,希望能对你有所帮助。