“根号二”是什么意思?(根号2是什么意思?)

网友提问最佳回答:

很多朋友想了解关于根号2的一些资料信息,下面是www.lmhack.com小编整理的与根号2相关的内容分享给大家,一起来看看吧。

根号二是一个数字,是一个无理数,表示为√2。√2表示的是对2开算术平方根,约为1.414。几何上2的平方根是横跨正方形的对角线的长度,边长为一个单位 ; 这是从毕达哥拉斯定理得出的。

文章目录:

  • 1、“根号二”是什么意思?
  • 2、根号2是什么意思?
  • 3、根号2是多少

一、“根号二”是什么意思?

根号二开不尽,1.41414……
意义是:爱,无穷无尽

根号二是一个数字,是一个无理数,表示为√2。√2表示的是对2开算术平方根,约为1.414。几何上2的平方根是横跨正方形的对角线的长度,边长为一个单位 ; 这是从毕达哥拉斯定理得出的。这可能是第一个已知的无理数。

根号是一个数学符号,根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。

扩展资料

根号二的由来:

公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。

这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。

参考资料来源:百度百科-根号 

百度百科-希伯索斯

二、根号2是什么意思?

根号2是一个无理数,即无限不循环小数,约等于1.414。

根号二一定是介于1与2之间的数,然后再计算1.5的平方大小,经过反复代数进去进行计算,也就是一个用二分法求方程x^2=2近似解的过程。根号是用来表示对一个数或一个代数式进行开方运算的符号。

根号的由来

十七世纪,法国数学家笛卡尔(1596~1650年)第一个使用了现今用的根号“√ ̄”。在一本书中,笛卡尔写道:“如果想求n的平方根,就写作±√n,如果想求n的立方根,则写作3√。 ”

有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√ ̄(不过,它比路多尔夫的根号多了一个小钩)就为现时根号形式。

立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用 表示。以后,诸如√ ̄等等形式的根号渐渐使用开来。

三、根号2是多少

根号2的近似值为1.41421.

根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若aⁿ=b,那么a是b开n次方的n次方根或a是b的1/n次方。

扩展资料

1、写根号:

先在格子中间画向右上角的短斜线,然后笔画不断画右下中斜线,同样笔画不断画右上长斜线再在格子接近上方的地方根据自己的需要画一条长度适中的横线,不够再补足。(这里只重点介绍笔顺和写法,可以根据印刷体参考本条模仿写即可,不硬性要求)

2、写被开方的数或式子:

被开方的数或代数式写在符号左方v形部分的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界,若被开方的数或代数式过长,则上方一横必须延长确保覆盖下方的被开方数或代数式。

3、写开方数或者式子:

开n次方的n写在符号√ ̄的左边,n=2(平方根)时n可以忽略不写,但若是立方根(三次方根)、四次方根等,是必须书写。

参考资料百度百科-根号

精确50位

约等于正负1.1892。

根号2即2的1/2次方,那么再对其取平方根,显然即得到2的1/4次方和 -2的1/4次方,使用计算器得到约等于正负1.1892。

表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根。一个正数有两个实平方根,它们互为相反数,负数有两个共轭的纯虚平方根。

如果一个非负数x的平方等于a,即  ,  ,那么这个非负数x叫做a的算术平方根。a的算术平方根记为  ,读作“根号a”,a叫做被开方数。求一个非负数a的平方根的运算叫做开平方。

结论:被开方数越大,对应的算术平方根也越大(对所有正数都成立)。

扩展资料:

比如136161这个数字,首先我们找到一个和136161的平方根比较接近的数,任选一个,比方说300到400间的任何一个数,这里选350,作为代表。

我们先计算0.5(350+136161/350),结果为369.5。

然后我们再计算0.5(369.5+136161/369.5)得到369.0003,我们发现369.5和369.0003相差无几,并且369²末尾数字为1。我们有理由断定369²=136161。

对于那些开方开不尽的数,用这种方法算两三次精度就很可观了,一般达到小数点后好几位。

实际中这种算法也是计算机用于开方的算法。

参考资料:百度百科--平方根


以上就是小编对于根号2的相关信息的介绍,希望能对大家有所帮助。

本文到此结束,希望对大家有所帮助呢。

获赞数:107

收藏数:63

回答时间:2024-02-27 04:22:25